Algebra und Zahlentheorie

Blatt 4

Abgabe: 22.11.2022, 14 Uhr

Gruppennummer angeben!

Aufgabe 1 (6 Punkte).

Sei d eine natürliche Zahl und G eine zyklische Gruppe der Mächtigkeit n.

(a) Zeige, dass G abelsch ist und die Abbildung

$$F_d: G \rightarrow G$$
 $g \mapsto g^d$

ein Gruppenhomomorphismus ist. Zu welcher uns bekannten Gruppe ist G isomorph?

- (b) Wenn d die Zahl n teilt, zeige, dass $Ker(F_d)$ die einzige Untergruppe der Mächtigkeit d ist. Bestimme die Mächtigkeit von $Im(F_d)$.
- (c) Zeige, dass F_d genau dann ein Automorphismus von G ist, wenn d und n teilerfremd sind. **HINWEIS:** Bézout.

Aufgabe 2 (10 Punkte).

- (a) Seien $F: G \to H$ ein Gruppenhomomorphismus und g aus G ein Element endlicher Ordnung. Zeige, dass F(g) endliche Ordnung in H besitzt. Des Weiteren teilt die Zahl ord(F(g)) die Ordnung ord(g).
- (b) Betrachte nun die Abbildung

$$\varphi: \ \mathbb{R} \ \to \ \mathbb{S}^1 = \{z \in \mathbb{C} \mid |z| = 1\}$$
$$\theta \ \mapsto \ e^{2i\pi\theta}$$
.

Zeige, dass φ ein Gruppenepimorphismus ist, wobei wir die Gruppen $\mathbb R$ additiv und $\mathbb S^1$ multiplikativ betrachten.

- (c) Beschreibe mit Hilfe des noetherschen Isomorphiesatzes alle Torsionselemente aus \mathbb{S}^1 .
- (d) Die Menge \mathbb{Q} ist klarerweise eine additive Untergruppe von \mathbb{R} . Ist die Quotientengruppe \mathbb{R}/\mathbb{Q} endlich?
- (e) Ist \mathbb{S}^1 isomorph zu der Quotientengruppe \mathbb{R}/\mathbb{Q} ?

Aufgabe 3 (4 Punkte).

Sei G eine nicht-triviale einfache endliche Gruppe und $g_0 \neq 1_G$ ein Element von G. Zeige, dass jeder Endomorphismus $F: G \to G$, der $F(g_0) = g_0^{-1}$ erfüllt, ein Automorphismus der Gruppe G ist.

DIE ÜBUNGSBLÄTTER KÖNNEN ZU ZWEIT EINGEREICHT WERDEN. ABGABE DER ÜBUNGSBLÄTTER IM FACH IM KELLER DES MATHEMATISCHEN INSTITUTS.